Stochastic Revealed Preferences with Measurement Error
نویسندگان
چکیده
منابع مشابه
Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models
In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...
متن کاملDetection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions
The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...
متن کاملA New Ridge Estimator in Linear Measurement Error Model with Stochastic Linear Restrictions
In this paper, we propose a new ridge-type estimator called the new mixed ridge estimator (NMRE) by unifying the sample and prior information in linear measurement error model with additional stochastic linear restrictions. The new estimator is a generalization of the mixed estimator (ME) and ridge estimator (RE). The performances of this new estimator and mixed ridge estimator (MRE) against th...
متن کاملdetection of outliers and influential observations in linear ridge measurement error models with stochastic linear restrictions
the aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. in addition, we derive the corrected score test statistic for outliers detection ba...
متن کاملInfill Asymptotics for a Stochastic Process Model with Measurement Error
In spatial modeling the presence of measurement error, or “nugget”, can have a big impact on the sample behavior of the parameter estimates. This article investigates the nugget effect on maximum likelihood estimators for a onedimensional spatial model: Ornstein-Uhlenbeck plus additive white noise. Consistency and asymptotic distributions are obtained under infill asymptotics, in which a compac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Review of Economic Studies
سال: 2020
ISSN: 0034-6527,1467-937X
DOI: 10.1093/restud/rdaa067